
UNIVERSIDAD DE GUANAJUATO

MANUAL – ZAPATA AISLADA

Datos de entrada

Como datos de entrada el usuario deberá presionar el botón "Ingresar Datos", el menú que despliega el botón contiene dos pestañas, en la pestaña de propiedades se le solicitará la geometría de la zapata y las características de los materiales, tomando como referencia la figura en planta y corte de la zapata.

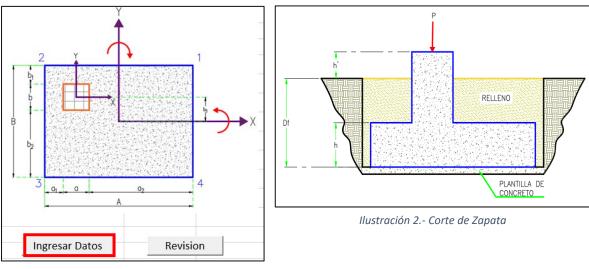


Ilustración 1.- Planta de Zapata

Se solicita además al usuario indicar si se deberá considerar el empuje pasivo. Se recomienda no utilizar dicho empuje ya que la zapata debe ser estable únicamente ante las cargas y la geometría que fue definida.

En ciertos casos cuando la estructura está construida o se tienen limitaciones en el diseño (espacio y posición de elementos) se considera una condición crítica utilizando los empujes pasivos, sin embargo se debe tener la certeza de que el material de relleno nunca se va a retirar en una condición critica donde actúen las presiones (vivas y muertas).

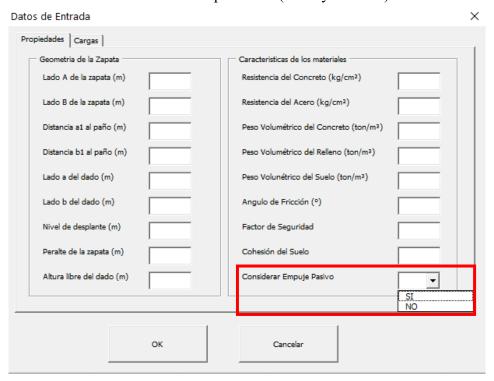


Ilustración 3.- Datos de Entrada Propiedades

El menú también contiene la pestaña de cargas donde se solicitará indicar el tipo de estructura Grupo A o Grupo B y de igual manera se indicará si la Zona es Sísmica o no lo es. Por último, se agregan las cargas actuantes sobre la zapata en la tabla.

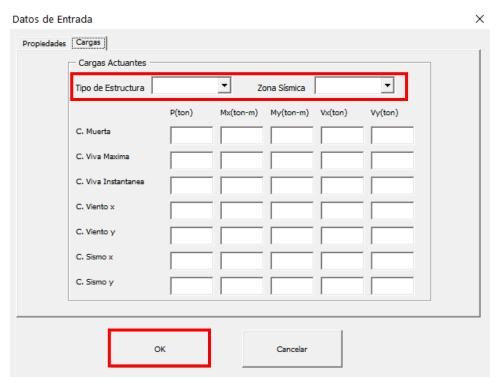


Ilustración 4.- Datos de Entrada Cargas

Nota: La fuerza P que comprime la zapata se indica con signo positivo pero actúa hacia abajo mientras que el signo a considerar para los momentos será positivo si estos actúan en el sentido que indica la siguiente figura. El cortante en x será positivo si este va en dirección positiva al eje x de lo contrario será negativo, caso similar para el cortante en y si va en dirección positiva al eje y será positivo de lo contrario será negativo.

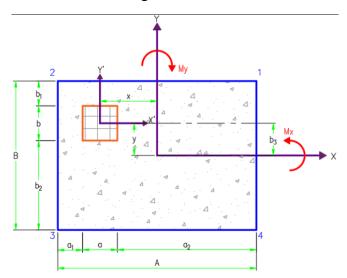
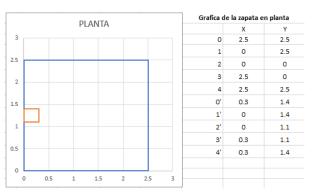


Ilustración 5.- Consideraciones de Signos

Para guardar los datos se presiona el botón "OK", posterior a esto se consulta la pestaña de resultados para corroborar que el diseño cumpla con las condiciones y en caso contrario se oprime el botón de revisión para que redimensione la zapata.

Las celdas de color rojo son los datos que son ingresados en el menú anteriormente expuesto y el resto son calculados automáticamente. La capacidad de carga es calculada mediante una función basada en la teoría de Meyerhof.


CARACTERÍSTICAS GEON	CARACTERÍSTICAS GEOMÉTRICAS							
Tipo de Zapata		Caso 1						
Lado A de la Zapata	Α	1.000 m						
Lado B de la Zapata	В	1.000 m						
Lado C ₁ del Dado	a (C ₁)	0.200 m						
Lado C ₂ del Dado	b (C ₂)	0.200 m						
Distancia a paño	a ₁	0.400 m						
Distancia a paño	a ₂	0.400 m						
Excentricidad	x = a ₃	0.000 m						
Distancia a paño	b ₁	0.400 m						
Distancia a paño	b ₂	0.400 m						
Excentricidad	y = b ₃	0.000 m						
Nivel de Desplante	D_f	1.000 m						
Altura libre del Dado	h'	0.000 m						
Peralte de la Zapata	h	0.100 m						
Recubrimiento en zapata	r	0.050 m						
Peralte efectivo	d	0.050 m						

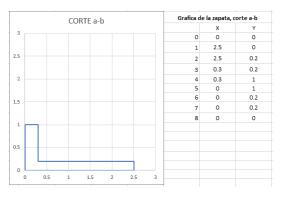

CARACTERÍSTICAS DE LOS MATERIALES							
Resistencia del conreto	f'c	250.00 kg/cm ²					
Resistencia del acero	fy	4,200.00 kg/cm ²					
Peso Vol. Concreto	Y _{concreto} 2.40 ton/m						
Peso Vol. Relleno	Yrelleno	1.80 ton/m ³					
Peso Vol. Del Suelo	Ysuelo	1.64 ton/m ³					
Ángulo de fricción	ф	30.00°					
Cohesión del suelo	c' 3.00 kg/cm						
Facto de Seguridad del suelo	F.S.	3					
Capacidad del Terreno	q _{terr} 603.03 ton/r						
Coeficiente pasivo	Kp 3.00						
Considerar Empuje pasivo:	SI						

Ilustración 7.- Características de los materiales

Ilustración 6.- Características Geométricas

Teniendo los datos de la geometría, la hoja de Excel grafica la sección real de la zapata en planta y en corte mediante coordenadas referidas a la geometría.

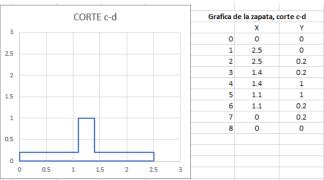


Ilustración 8.- Corte Sección Zapata

La hoja contiene la sección de Elementos Mecánicos Actuantes donde se muestran las combinaciones de servicio y de diseño correspondientes.

ELEMENTO					
Tipo de estructura	Grupo A		Zona Sísmica	NO	
Cargas Actuantes	P (ton)	M _x (ton-m)	M _y (ton-m)	V _x (ton)	V _y (ton)
C. Muerta	1.00	1.00	1.00	1.00	1.00
C. Viva Maxima	2.00	2.00	2.00	2.00	2.00
C. Viva Instantanea	3.00	3.00	3.00	3.00	3.00
C. Viento x	4.00	4.00	4.00	4.00	4.00
C. Viento y	5.00	5.00	5.00	5.00	5.00
C. Sismo x	6.00	6.00	6.00	6.00	6.00
C. Sismo y	7.00	7.00	7.00	7.00	7.00
Combinaciones de servicio					
Servicio 01	3.00	3.00	3.00	3.00	3.00
Servicio 02	8.00	8.00	8.00	8.00	8.00
Servicio 03	9.00	9.00	9.00	9.00	9.00
Servicio 04	12.10	12.10	12.10	12.10	12.10
Servicio 05	12.80	12.80	12.80	12.80	12.80
Combianciones de diseño					
Diseño 01	4.90	4.90	4.90	4.90	4.90
Diseño 02	8.80	0.00	0.00	0.00	0.00
Diseño 03	9.90	9.90	9.90	9.90	9.90
Diseño 04	13.31	13.31	13.31	13.31	13.31
Diseño 05	14.08	14.08	14.08	14.08	14.08

Ilustración 9.- Elementos Mecánicos actuantes

Con un condicional, la tabla revisa si hay alguna combinación que no aplique, por ejemplo, si hay alguna carga que sea igual a cero o no se esté considerando, se tendrá una combinación menos y no arrojará ningún valor.

Para el caso de las combinaciones de diseño, con un condicional, aplica los factores de seguridad dependiendo del tipo de estructura indicada.

COMBINACIÓN POR SERVICIO

Servicio 01	CM + CV
Servicio 02	$CM + CV_{inst} + Viento_x$
Servicio 03	$\mathit{CM} + \mathit{CV}_{inst} + \mathit{Viento}_{y}$
Servicio 04	$CM + CV_{inst} + Sismo_x + 0.3Sismo_y$
Servicio 05	$CM + CV_{inst} + Sismo_x + 0.3Sismo_y$

Ilustración 10.- Combinación por Servicio

	Grupo B	Grupo A
Diseño 01	1.3CM + 1.5CV	1.5CM + 1.7CV
Diseño 02	$1.1CM + 1.1CV_{inst} + 1.1Viento_x$	
Diseño 03	$1.1CM + 1.1CV_{inst} + 1.1Viento_y$	
Diseño 04	$1.1CM + 1.1CV_{inst} + 1.1Sismo_x + 0.3Sismo_y$	
Diseño 05	$1.1CM + 1.1CV_{inst} + 1.1Sismo_y + 0.3Sismo_x$	

Ilustración 11.- Combinación por Diseño

Constantes para el cálculo

La hoja se encarga de calcular algunas constantes que serán necesarias más adelante en el cálculo. Esto con base en las (Normas Técnicas Complementarias , 2017).

CONSTANTES PARA	EL CÁLCU	JLO			
Resistencia del Concreto	f"c	212.50 kg/cm ²			511 - 60000
Factor β ₁	β_1	0.85	f''c = 0.85	f'c	$\rho_b = \frac{f''c}{fy} \cdot \frac{6000\beta_1}{6000 + fy}$
Porcentaje de Acero Min.	ρ_{min}	0.00264	$\beta_* = 0.85 \acute{e}$	$1.05 - \frac{f''c}{1400}$	
Porcentaje balanceado	ρ_{b}	0.02530			$ \rho_{max} = F_R \rho_b $
Porcentaje de Acero Max	ρ_{max}	0.0190	$ \rho_{min} = \frac{0.7}{} $	$\sqrt{f'c}$	$P_p = \frac{1}{2} \gamma_2 D^2 K_p + 2c'_2 \sqrt{K_p} I$
			Pmin	fy	2 /25 Kp + 2c 2V Kp2

Ilustración 12.- Constantes para el cálculo

Estabilidad de la estructura por cargas de servicio

Se realizará el cálculo de los momentos de equilibrio, de volteo y los factores de seguridad, tanto en sentido "x" como en "y".

Class and	_	C (4)	Brazos		Momentos Estabilizantes	
Elemento		Carga (ton)	x (m)	y (m)	M _{Ry} (ton-m)	M _{Rx} (ton-m)
Peso de la Zapata	W zap	0.240	0.500	0.500	-0.120	-0.120
Peso del Dado	W _{dado}	0.086	0.500	0.500	-0.043	-0.043
eso del Relleno	W Relleno	1.555	0.500	0.500	-0.778	-0.778
eso por carga Axial	P	11.200	0.500	0.500	-5.600	-5.600
		13.08 ton			-6.54 ton-m	-6.54 ton-m
			MOMENTOS			
			MOMENTOS DE EQUILIBRIO			
2		1		M _{ey} =	-6.54 ton-m	
b ₁	4] .		M ex=	-6.54 ton-m	
		M _x	MOMENTOS	DE VOLTEO		
\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 44	D3 X		M v _y =	0.00 ton-m	
b ₂				M v _x =	0.00 ton-m	
3 01 0 02			FACTORES DE SEGURIDAD AL VOLTEO		D AL VOLTEO	
		4		FS v _x =	1.50	= 1.5, OK!
- ^{vi} - - ^v - -		1		FS v _v =	1.50	= 1.5, OK!

Ilustración 13.- Estabilidad de la Estructura por Cargas de Servicio

En la primera parte se muestra una tabla donde se realiza el cálculo de las cargas que estabilizan la zapata, y a la par el cálculo de los momentos estabilizantes. Posterior a eso se muestran los momentos de equilibrio obtenidos de la suma de los momentos estabilizantes, y los momentos de volteo.

Para el cálculo de los momentos de equilibrio, primero se revisa hacia qué sentido se podría voltear la zapata, tanto en sentido x como y, ya que de esto depende el sentido del momento y por lo tanto el punto respecto al cual se tome este. Con un condicional se revisa el signo del momento de volteo, y con base en eso se decide respecto a qué punto se calcula el momento. Por ejemplo, si el Momento de Volteo en y (M_{Vy}) es negativo, entonces se voltearía respecto a la izquierda y respecto a ese punto se toma el momento de equilibrio correspondiente.

Por último, se realiza el cálculo de los factores de seguridad y con un condicional, Se verifica si pasa o no pasa. Si el Factor de Seguridad obtenido es menor a 1.5 entonces mostrará el texto "OK!" y si no es así mostrará el texto "No pasa!"

Esfuerzos de contacto sobre el suelo

A continuación, se calculan los esfuerzos que generaran las cargas al suelo, considerando algunas propiedades geométricas de la zapata (área de contacto, momentos de inercia). Para el cálculo de los esfuerzos en cada punto se utilizó una macro, con la cual se creó una función que realiza el cálculo de los esfuerzos (q), con el fin de optimizar el procesamiento de la hoja de cálculo.

Los resultados de los esfuerzos serán positivos lo cual indica Compresión o negativos que indica Tensión. El esfuerzo máximo en la zapata tendrá que ser menor al esfuerzo admisible, ¡si es el caso la hoja nos dará un "OK!", y en caso de presentarse tensión, la cual no puede ser soportada por nuestro suelo, se indicará con la leyenda "Redimensionar".

ESFUERZOS DE CONT	ΔΟΤΟ SOI	BRE EL SUELO)		
PROPIEDADES DE LA ZA		JAC EL GOLL			
Área de contacto	A	1.000 m ²	$A = A \times B$	$I_x = \frac{AB^3}{12}$	$I_y = \frac{BA^3}{12}$
Momento de Inercia X	lx	0.083 m4		12	12
Momento de Inercia Y	ly	0.083 m4	$M_x' = M_{V_y} + P(b_3)$	$M_y' = M_{V_x} + P(a_3)$	
ESFUERZOS MÁXIMOS					
M total alrededor de X	M'x	0.00 ton-m			
M total alrededor de Y	M'y	0.00 ton-m			
X			P. M. V M.	x q1 =	13.082 ton/m ²
Ī			$q_i = \frac{P_s}{A} + \frac{M_{sx}y}{I_v} + \frac{M_{sy}}{I_v}$	- q2 =	13.082 ton/m ²
			. ,	q3 =	13.082 ton/m ²
2		1		q4 =	13.082 ton/m
4 4	4	-	Esfuerzo Máximo	qmax	13.08 ton/m²
4 4		-	Capacidad del Terreno	qadm	603.03 ton/m
" 4 4	4	_			Ok!
	- 4	→ x	Esfuerzo Mínimo	qmin	13.08 ton/m ²
4. 4. 4	4				Ok!
4.4	4				
4 4 . 4	4 *				
4	4 . 4				
3		4			

Ilustración 14.- Esfuerzos de Contacto sobre el Suelo por Cargas de Servicio

Estabilidad de la estructura por cargas de diseño

La hoja cuenta con un factor de carga (F.C.=1.1) de acuerdo con la NTC2017 el cual se multiplica por las cargas obtenidas anteriormente y se realizará el cálculo de los momentos de equilibrio, de volteo y los factores de seguridad, tanto en sentido "x" como en "y".

Florente	- Course Item		Bra	izos	Momentos I	Estabilizantes
Elemento Carga (ton)		x (m)	y (m)	M _{Ry} (ton-m)	M _{Rx} (ton-m)	
Peso de la Zapata	W zap	0.264	0.500	0.500	-0.132	-0.132
Peso del Dado	W _{dado}	0.095	0.500	0.500	-0.048	-0.048
Peso del Relleno	W Relleno	1.711	0.500	0.500	-0.855	-0.855
Peso por carga Axial	Pu	12.320	0.500	0.500	-6.160	-6.160
		14.390 ton			-7.195 ton-m	-7.195 ton-m
b		1	MOMENTOS	M _{ey} = M _{ex} =	-7.19 ton-m -7.19 ton-m	
3 b ₂	4 4	×		M v _y =	0.00 ton-m 0.00 ton-m	
		-	FACTORES D	E SEGURIDAI	AL VOLTEO	
3 0 0	On .	4		FS v _x =	1.50	= 1.5, OK!
- V	72	-1		FS v _v =	1.50	= 1.5, OK!

Ilustración 15.-Estabilidad de la Estructura por Cargas de Diseño

Las consideraciones para el cálculo de estabilidad por cargas de diseño serán las mismas que las expuestas anteriormente en estabilidad por cargas de servicio.

Esfuerzos de contacto sobre el suelo

A continuación, se calculan los esfuerzos que generaran las cargas al suelo, considerando algunas propiedades geométricas de la zapata (área de contacto, momentos de inercia). Para el cálculo de los esfuerzos en cada punto se utilizó una macro, con la cual se creó una función que realiza el cálculo de los esfuerzos (q), con el fin de optimizar el procesamiento de la hoja de cálculo. Se realiza el cálculo de cortante último (Vu) el cual es igual a la carga menos el promedio de los esfuerzos obtenidos multiplicado por Cxp y Cyp.

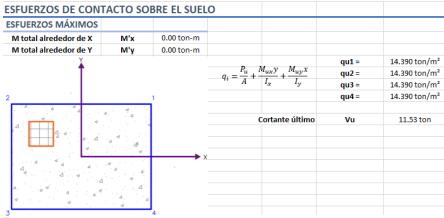


Ilustración 16.-Esfuerzos de Contacto Sobre el Suelo por Cargas de Diseño

Diseño del armado

La hoja de cálculo propondrá el número de varilla a utilizar, el usuario podrá cambiar dicho número de varilla si así lo desea. Con el número de varilla que el usuario seleccionó se calcula la separación para el diseño del armado en sentido *x*, *y* y por cambios volumétricos.

DISEÑO A FLEXIÓN EN SENTIDO X			CORTANTE POR TENSIÓN DIAGONAL EN SENTIDO X			
Ancho a analizar	b	100.000 cm	Separación empleada		Sep.	10.000 cm
Peralte Total	h	10.000 cm	Área de acero	empleada	A _s	7.04 cm ²
Peralte Efectivo	d	5.000 cm	ρ empleado		ρ	0.01408
Factor de Reducción flexión	F_R	0.9		Г	1	
Porcentaje de Acero Min.	ρ _{min}	0.00264		$\rho = \frac{f_c^{\prime\prime}}{2} \left _{1} - \right $	$1-\frac{2M_u}{1-\frac{2M_u}{2}}$	
Indice de refuerzo	q	0.23389		f_y	$F_R b d^2 f_c^{\prime\prime}$	
Pocentaje de Acero	ρ	0.01183		•	•	
ρ a utilizar	ρ	0.01408	Cortante crítico	0	V _{CR}	2,855.36 kg
Area de acero	A_s	7.04 cm ²	Cortante últim	o presente	V_{up}	4,320.32 kg
Varilla a utilizar	#	3				
Áre a de la varilla	A_{v}	0.71 cm ²		El peralte	propuesto no es d	adecuado
Separación necesaria	Sep.	10.123 cm		Utiliza	ar varillas no. 3 @	10 cm

Ilustración 17.- Diseño del armado en sentido X

DISEÑO A FLEXIÓN EN S	ENTIDO Y		CORTANTE POR	TENSIÓN DIA	GONAL EN SEN	TIDO Y
Ancho a analizar	b	100.000 cm	Separación emplea	ada	Sep.	10.000 cm
Peralte Total	h	10.000 cm	Área de acero emp	oleada	A_s	7.04 cm ²
Peralte Efectivo	d	5.000 cm	ρ empleado		ρ	0.01408
Factor de Reducción flexión	F_R	0.9	_			
Porcentaje de Acero Min.	ρ _{min}	0.00264	q = 1 - 1 -	$-\frac{2M_u}{F_R b d^2 f_c^{\prime\prime}}$	$\rho = \frac{f_c^{\prime\prime}}{f_c} q$	
Indice de refuerzo	q	0.23389	1	$F_R b d^2 f_c^{\prime\prime}$	$p = f_y^q$	
Pocentaje de Acero	ρ	0.01183				
ρ a utilizar	ρ	0.01408	Cortante crítico		V _{CR}	2,855.36 kg
Area de acero	A_s	7.04 cm ²	Cortante último presente V _{up}		$V_{\sf up}$	4,320.32 kg
Varilla a utilizar	#	3				
Áre a de la varilla	A_{v}	0.71 cm ²		El peralte p	propuesto no es a	decuado
Separación necesaria	Sep.	10.123 cm		Utiliza	r varillas no. 3 @ 1	0 cm

Ilustración 18.- Diseño del armado en sentido y

DISEÑO POR CAMBIOS	VOLUMÉTR	ICOS (ACERO	POR TEMPERATURA)
Esfuerzo de fluencia	f _y	4200.0000	
Espesor de la losa	x ₁	5.000 cm	660 x ₁
Area de acero	As	0.0112	$a_{sl} = \frac{1}{f_{y}(x_{1} + 100)}$
Se armará e	en dos lechos		
Porcentaje de acero por t.	ρ_{t}	0.0022 cm ²	Utilizar varillas no. 3 @ 50 cm por temperatura
Varilla a utilizar	#	3	
Áre a de la varilla	A_{v}	0.71 cm ²	
Separación necesaria	Sep.	50.000 cm	

Ilustración 19.- Diseño del armado por cambios volumétricos

Revisión del cortante por penetración

La hoja mostrará el caso de punzonamiento para el diseño de la zapata propuesta.

Revisión del cortante por penetración								
		CASO:	Caso 1					
		C _{xp} =	0.250 m	Actualizar				
Distancias del area de punzonamiento			C _{yp} =	0.250 m	Punzonamiento			
2. Factor de transferencia de flexión por cortante			α _γ =	0.4012				
			α _x =	0.4012	y			
3. Area de punzonamiento			A _{CR} =	0.050 m²	†			
Distancias del centroide del área a punzonamiento a los bordes			C ₂₃ =	0.125 m	. C21 C14 .			
			C ₁₄ =	0.125 m	- Sh - Sh			
			C ₃₄ =	0.125 m	2 1			
		C ₁₂ =	0.125 m	G ₁₂				
 Momentos polares de inercia respecto a los ejes centroidales 			J _{cy} =	0.001 m4	C ₀ b			
			J _{cx} =	0.001 m4	ļ			
Distancias del centroide de cortante al centroide del dado		g _x =	0.000 m	' 				
		g _y =	0.000 m	1 3 4				
7. Momentos respecto al centroide del área de cortante		M _{px} =	0.00 ton-m	2 0 02				
		M _{py} =	0.00 ton-m	C _p				
			τ _{u1} =	230.61 ton/m²				
8. Esfuerzos en las esquinas de la zona de			τ _{u2} =	230.61 ton/m²				
punzonamiento		τ _{u3} =	230.61 ton/m²					
			τ _{υ4} =	230.61 ton/m²				

Ilustración 20.- Revisión del Cortante por Penetración

Posteriormente se realiza una comparación entre el esfuerzo último de punzonamiento y el cortante resistente del concreto por punzonamiento. Si el esfuerzo último de punzonamiento es mayor que el cortante resistente del concreto por punzonamiento aparecerá la leyenda "El peralte propuesto no es adecuado" de lo contrario aparecerá la leyenda "El peralte propuesto es adecuado".

Esfuerzo ultimo de punzonamiento	τ _u =	23.06 kg/cm²	$V_{cR} = 0.4 F_R bd \sqrt{f_c}$	
Cortante resistente del concreto por punzonamiento	V _{CR} =	4.74 kg/cm²		
	El peralte			

Ilustración 21.- Comprobación por punzonamiento

Hoja de resultados

El archivo de Excel cuenta con una pestaña llamada "Resultados" en donde el usuario podrá consultar un resumen de los cálculos antes expuestos como lo son: geometría de la zapata, características de los materiales, capacidad de carga del suelo, revisión por estabilidad de la estructura por cargas de servicio, esfuerzos de contacto sobre el suelo, cortante por tensión diagonal en sentido x y y, revisión del cortante por penetración, así como el acero de refuerzo en sentido x, y y por temperatura.

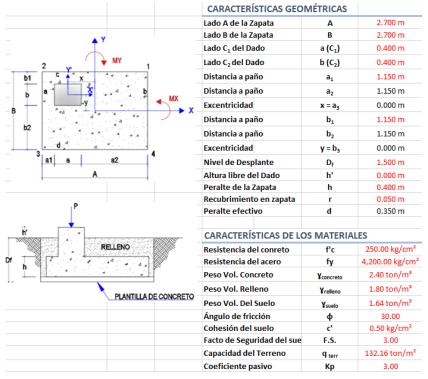


Ilustración 23.- Hoja de resultados características

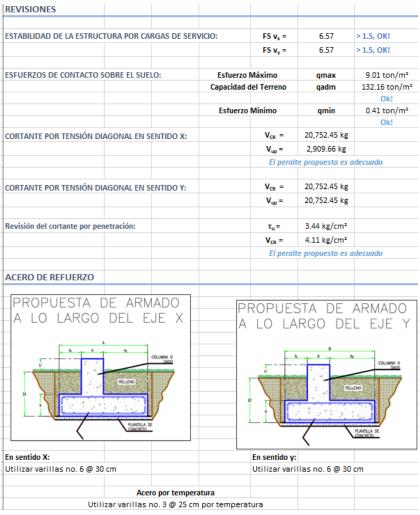


Ilustración 22.- Hoja de resultados revisiones