

Tiempos de extinción del modelo logístico estocástico

Autor: Santiago Rodríguez Newton Supervisor: Dr. Ehyter Martín Matías González

Modelo logístico estocástico

El modelo logístico modela poblaciones con capacidad de carga \emph{M} y tasa de crecimiento \emph{r} con la ecuación diferencial

$$P'(t) = rP(t)[M - P(t)], P(0) = P_0.$$

Se tienen dos soluciones constantes, P(t)=0 (extinción) y P(t)=M (saturación). Usando la transformación $y(t)=\frac{P(t)}{M}-1$ se obtiene

$$y'(t) = -Mry(t)[1 + y(t)], \quad y_0 = \frac{P_0}{M} - 1.$$

Las soluciones constantes ahora son y(t) = -1 (extinción) y y(t) = 0 (saturación). Si $r = \bar{r} + \eta_t$ donde η_t es ruido gaussiano con intensidad σ se obtiene el problema de Itô

 $dy_t = -M\bar{r}y_t[1+y_t] dt - M\sigma y_t[1+y_t] dB_t.$

Se siguen teniendo las mismas soluciones constantes y si $-\sigma^2 M > 2\bar{r}, y_t \to -1$ casi seguramente, es decir, la población se extingue en algún momento.

Planteamiento

Si sabemos que la población se extinguirá, nos interesa estudiar la distribución de los tiempos de extinción del modelo logístico estocástico, en particular, el primer tiempo en el que $y_t \le \varepsilon - 1$ para $\varepsilon > 0$ fijo. Para simular el modelo, usamos el esquema de Milshstein de segundo orden dado por la relación recursiva

$$y_{k+1} = y_k - My_k[1 + y_k] \left[h \left(\bar{r} + \frac{M\sigma^2(1 + 2y_k)}{2} \right) - \sigma(1 + y_k) N_k + \frac{M\sigma^2(1 + 2y_k) N_k^2}{2} \right]$$

donde h es el tamaño de salto y N_k son variables aleatorias independientes con distribución N(0,h).

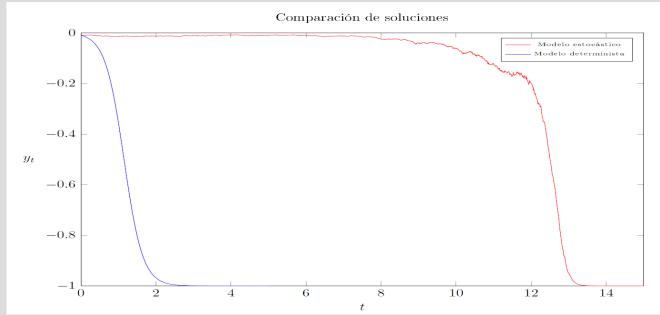


Figura 1. Comparación de solución determinista y estocástica del modelo logístico

Se trabaja con 100,000 tiempos de extinción simulados con los parámetros $\bar{r}=-0.2$, $\sigma=0.14$, M=20, $y_0=-0.01$ y h=0.01.

Distribución Generalizada de Valores Extremos

La DGVE está dada por la función

$$H_{\xi,a,b}(x) = \begin{cases} \exp\left(-\left[1 + \xi\left(\frac{x-b}{a}\right)\right]^{-\xi^{-1}}\right), & \xi \neq 0 \\ \exp\left(\exp\left[-\frac{x-b}{a}\right]\right), & \xi = 0 \end{cases}$$
 donde x es tal que $1 + \frac{\xi(x-b)}{a} > 0$. Si $\xi > 0$, $\xi = 0$ o $\xi < 0$, la DGVE puede ser

donde x es tal que $1 + \frac{\xi(x-b)}{a} > 0$. Si $\xi > 0$, $\xi = 0$ o $\xi < 0$, la DGVE puede ser reparametrizada para obtener las distribuciones Fréchet (H_F) , Gumbel (H_G) o Weibull (H_W)

Teorema de Fisher-Tippet y Dominios de Atracción

Sea $\{X_n\}$ una sucesión de variables aleatorias iid con función de distribución F. Si existen constantes $a_n > 0$ y $b_n \in \mathbb{R}$ tales que $F^n(a_n x + b_n) \to H(x)$, entonces H es una DGVE.

Definimos entonces el dominio de atracción maximal de una distribución *H* como el conjunto de funciones de distribución

$$D(H) = \{ F \mid F^n(a_n x + b_n) \longrightarrow H(x) \}$$

donde $a_n > 0$ y $b_n \in \mathbb{R}$.

Función de excesos promedio

Dada una variable aleatoria no negativa X, definimos su FEP como

$$e_F(u) = \mathbb{E}[X - u \mid X > u], \quad \overline{F}(u) > 0.$$

Para calcular la FEP con un conjunto de \emph{n} muestras, usamos la versión empírica dada por

$$e_{n,F}(u) = \frac{1}{|\Delta_n(u)|} \sum_{k \in \Delta_n(u)} (X_k - u), \quad \Delta_n(u) = \{k \mid X_k > u\}$$

donde $e_{n,F}(u) = 0$ si $\Delta_n(u) = \{k \mid X_k > u\} = \emptyset$.

Descarte de dominios de atracción

Usando la FEP, es posible descartar dominios de atracción debido a los siguientes resultados:

- Si $H \in D(H_F)$, se cumple que $\lim_{u \to \infty} \frac{e_H(u)}{u} > 0$.
- Si $H \in D(H_W)$, se cumple que $\lim_{u \to \omega_H} \frac{e_H(u)}{u} > 0$.
- Si $H \in D(H_G)$, se cumple que $\lim_{u \to \infty} \frac{e_H(u)}{u} = 0$ si $\omega_H = \infty$ y $\lim_{u \to \infty} \frac{e_H(u)}{\omega_H u} = 0$ si $\omega_H < \infty$.

Distribución Generalizada de Pareto y el Teorema de Pickands - Balkema

La distribución generalizada de Pareto (DGP) está dada por la función

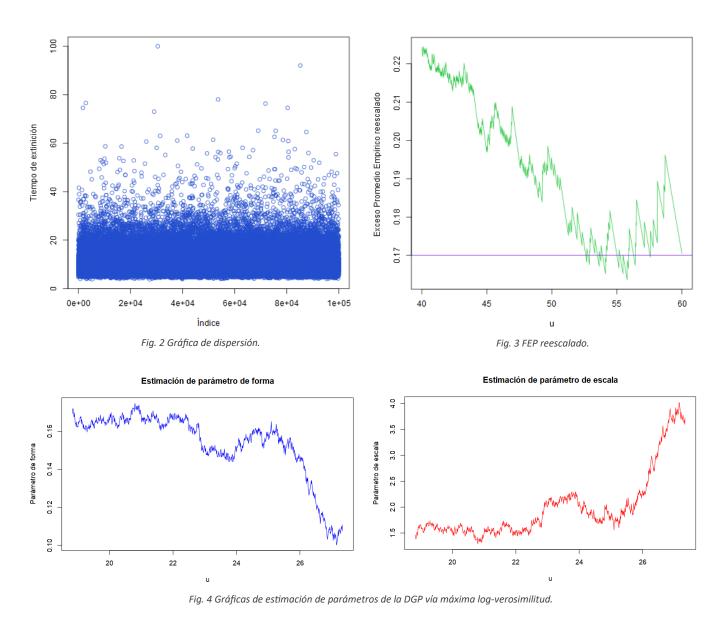
$$P_{\xi,a,b}(x) = \begin{cases} 1 - \left(1 + \xi \left[\frac{x-b}{a}\right]\right)^{-\xi^{-1}}, & \xi \neq 0\\ 1 - \exp\left(-\frac{x-b}{a}\right), & \xi = 0 \end{cases}$$

donde $x \ge b$ si $\xi \ge 0$ y $0 \le x \le -\frac{a}{\xi} + b$ si $\xi < 0$. El Teorema de Pickands – Balkema nos dice que $F \in D(H_{\xi,a,b})$ si y solo si existe una función positiva y medible a tal que

$$\lim_{u \to \omega_F} \sup \left| \frac{\bar{F}(x+u)}{\bar{F}(u)} - \bar{P}_{\xi,a(u),0}(x) \right| = 0$$

donde el supremo se toma para $x \in [0, \omega_F - u)$. En otras palabras, para u suficientemente grande, $\bar{F}(x+u) \approx \bar{F}(u)\bar{P}_{\xi,a,0}(x)$.

Resultados



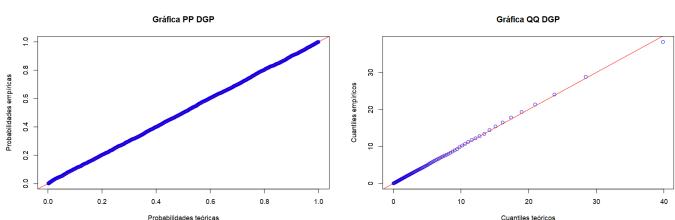


Fig. 5 Gráficas PP y QQ de los datos sobre el umbral menos dicho umbral comparado al ajuste DGP

Interpretación

Fig. 2 No se aprecia ningún máximo, por lo tanto, $\omega_F = \infty$ y se descarta el dominio de atracción Weibull.

Fig. 3 La FEP reescalada $\frac{e_{n,F}(u)}{u}$ parece converger a un valor positivo, por lo tanto, se descarta el dominio de atracción Gumbel.

Fig. 4 La estimación del parámetro de forma y escala es constante en el extremo izquierdo de la gráfica, entonces se escoge como umbral u = 18.83 el cuantil del 95%.

Fig. 5 La linealidad de los puntos en las gráficas PP y QQ muestran un ajuste excelente entre los datos sobre el umbral y la DGP con parámetros $\xi = 0.169$ y $\alpha = 4.652$. Como $\xi > 0$, se refuerza la idea que la distribución es de dominio de atracción Fréchet.