This work reports the synthesis and crystal structure characterization of new neutral hexacoordinated tin(IV) obtained by the reaction of $SnX_{4}X = Cl$, Br or I as starting materials with the O,N,N,O donor β -ketoiminate ligand (2Z,2'Z)-3,3'-(ethane-1,2divibis(azanedivil))bis(1-phenvibut-2-en-1-one). The structural analysis of complexes 1-3 were carried out by single-crystal X-ray diffraction and solution ¹¹⁹Sn NMR (except complex **3**) spectroscopies. The complexes showed distorted octahedral geometries with coordination skeleton at Tin atom of $SnX_2N_2O_2$.

Introduction and Objective

In continuation with our systematic investigations on hypercoordinated silicon and tin complexes [1]. The synthesis of these type of compounds which contain protic ligands, generally required the presence of base compounds as a proton extraction of the ligand, for example triethylamine [2]. The main objective of this work was to development a new methodology to obtain neutral hexacoordinated tin(IV) complexes without the use of triethylamine as base proton extraction. Herein we report the straightforward synthesis of neutral hexacoordinated tin(IV) complexes starting from $SnX_4 X = CI$, Br or I and symmetric β ketoiminate ligand.

The starting materials $SnCl_{4}$ and $SnBr_{4}$ were commercially available from Sigma Aldrich and Snl₄ was obtained as orange crystals with 60 % yield by the reaction of metallic tin with I₂ as show in the Scheme 1 [3].

Scheme 1

The new neutral hexacoordinated tin(IV) complexes **1-3** were obtained by the straightforward reaction of SnX₄ with I₂ with the β-ketoiminate ligand (Scheme 2) in dried acetonitrile.

Ortep view of compound Snl₄

Ortep view of compound 1

1853.93(16) Å³, Z = 8, T = 293(2) K, μ(ΜοΚα) = 15.979 mm^{-1} , *Dcalc* = 4.488 g/cm³, 1682 reflections measured (6.64° \leq 2 Θ \leq 58.12°), 699 unique (R_{int} = 0.0504, R_{sigma} = 0.0726) which were used in all calculations. The final R_1 was 0.0589 (>2sigma(I)) and wR_2 was 0.1517

Crystal Data for $C_{24}H_{25}Cl_2N_3O_2Sn$ (M = 577.06) g/mol): monoclinic, space group P21/c (no. 14), a = 15.5096(13) Å, b = 14.2253(13) Å, c = 11.6277(7) Å, $\beta = 95.212(7)^{\circ}$, V = 2554.8(4) Å3, Z = 4, T = 293(2) K, μ (MoK α) = 1.234 mm-1, Dcalc = 1.500 g/cm3, 11410 reflections measured (6.72° \leq 2 $\Theta \leq$ 52.74°), 5044 unique (Rint = 0.0485, Rsigma = 0.0672) which were used in all calculations. The final R1 was 0.0702 (>2sigma(I)) and wR2 was 0.2156.

Crystal Data for $C_{22}H_{22}Br_2N_2O_2Sn$ (*M* =624.95) g/mol): monoclinic, space group $P2_1/c$ (no. 14), a = 15.6614(7) Å, b = 14.2366(7) Å, c =11.6586(4) Å, *B* = 94.423(4)°, V = 2591.72(19) Å³, Z = 4, T = 293(2) K, μ(Mo Kα) = 4.087 mm^{-1} , *Dcalc* = 1.6015 g/cm^3 , 8278reflections measured (6.7° \leq 2 $\Theta \leq$ 58.4°), 5365 unique ($R_{int} = 0.0207$, $R_{sigma} = 0.0441$) which were used in all calculations. The final R_1 was 0.0724 $(I \ge 2u(I))$ and wR_2 was 0.2480

Suitable crystals for X-ray single-crystal diffraction were obtained by slow cooling a solution of complexes 1-3 from 60° to room temperature.

Schlenk Line

NMR MHz Spectrometer

Single-Crystal X-ray Diffractometer

Ortep view of compound **2**

Ortep view of compound **3**

Crystal Data for $C_{22}H_{22}I_2N_2O_2Sn$ (*M* =718.91) g/mol): monoclinic, space group $P2_1/c$ (no. 13.7655(6) Å, θ = $111.804(5)^{\circ}$, V = 2384.19(17) Å³, Z = 4, T = 293(2) K, μ (MoK α) = 3.681 mm^{-1} , *Dcalc* = 2.003 g/cm^3 , 13013 reflections measured (6.68° \leq 2 $\Theta \leq$ 52.74°), 4780 unique (*R*_{int} = 0.0296, *R*_{sigma} = 0.0291) which were used in all calculations. The final R_1 was 0.0340 (>2sigma(I)) and *wR*₂ was 0.0904

Table 1. Selected bond lengths, ¹¹⁹Sn NMR chemical shift and melting point.

References

- 1. A) Alcocer Gómez F., González-García G. Síntesis y caracterización de un nuevo complejo Hexacoordinado neutro de estaño (IV) con ligante O,N,N,O donador tipo salen. (2018). Verano de la Investigación Científica, Vol. 4 no. 1, 832-836. B) Joel Alexandro Guajardo García, Gerardo González-García, Jorge A. López Jiménez. (2018). Complejos de Silicio Hipercoordinado con Ligantes O,N Donadores, Verano de la Investigación Científica, 2018, Jóvenes en la Ciencia, Vol. 4 No. 1, 915-919.
- 2. Wagler, J. & Roewer, G. Syntheses of Allyl- and 3-Silylpropyl-substituted Salen-like Tetradentate Ligands via Hypercoordinate Silicon Complexes. (2006). Z. Naturforsch., B. 61, 1406-1412. Recuperado de http://www.znaturforsch.com/ab/v61b/s61b1406.pdf
- 3. Richard W. Schaeffer, Benny Chan, Michael Molinaro, Susan Morissey, Claude H. Yoder, Carolyn S. Yoder and Stephanie Shenk . (1997). The Synthesis, Characterization, and Lewis Acidity of Snl₂ and Snl₄. J. Chem. Educ., vol. 74, no. 5, 575-577.

Acknowledgments

Compound	Sn-X	Sn-O	Sn-N	¹¹⁹ Sn (δ)	Melting point °C
1	2.438 (3) 2.438 (3)	2.017 (6) 2.020 (6)	2.102 (6) 2.108 (7)	- 573.92	170 (dec.)
2	2.8358 (4) 2.7891 (4)	2.046 (3) 2.037 (3)	2.136 (3) 2.133 (3)	-1025.97	138 (dec.)
3	2.6053 (13) 2.5844 (14)	2.020 (6) 2.037 (7)	2.128 (8) 2.112 (8)	ND	140 (dec.)